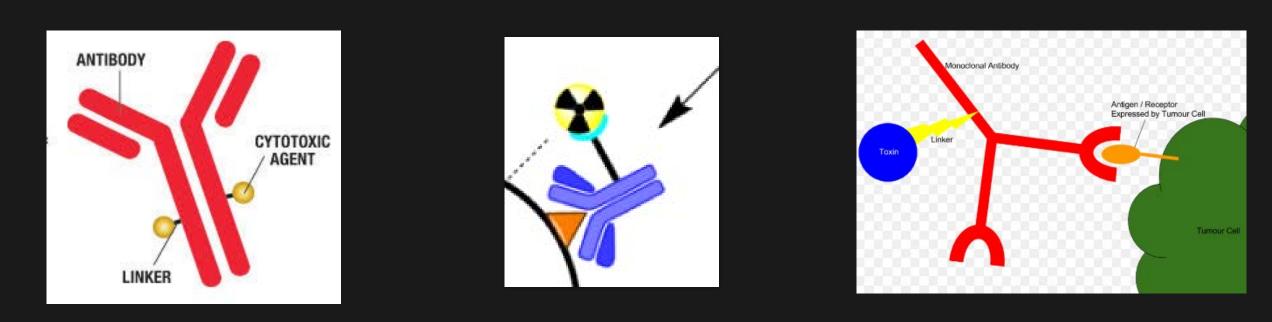
New Therapies for Leukemia

Lauren Zion, PharmD, BCOP, BCPS, CCRP

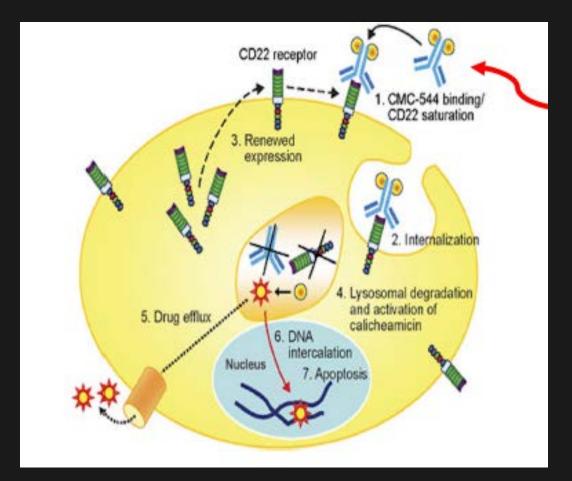

Objectives

• Classify types of anticancer treatments

- Define and classify new approvals 2017-2018
 - Acute Myeloid Leukemia (AML)
 - Chronic Myeloid Leukemia (CML)
 - Acute Lymphoblastic Leukemia (ALL)
 - Chronic Lymphocytic Leukemia (CLL)
- Identify current place in therapy for new treatments
- Understand general administration characteristics and common toxicities

Type of therapy	Characteristics	Action
Traditional cytotoxic chemotherapy	Widespread action and toxicities	Within cells; prevents division and reproduction
Small molecule inhibitors	Inhibit enzymatic activity of specific proteins	Within cells; targeted
Antibodies	Proteins targeting specific antigens	Extracellular
Antibody conjugates	Targeted activity with selective cytotoxicity	Extracellular target; complex internalized

Type of therapy	Delivery	Naming convention
Traditional cytotoxic chemotherapy	Any; PO, IV, IM, subQ	Varies
Small molecule inhibitors	Usually PO, may be injected	End in "-ib"
Antibodies	Injected, usually IV, possibly subQ	End in "-mab"
Antibody conjugates	IV	Contain "-mab"; followed by cytotoxic agent name


Antibody Drug Conjugate

Antibody Radionuclide Conjugate

Antibody Exotoxin Conjugate

• Mechanism for antibody conjugates

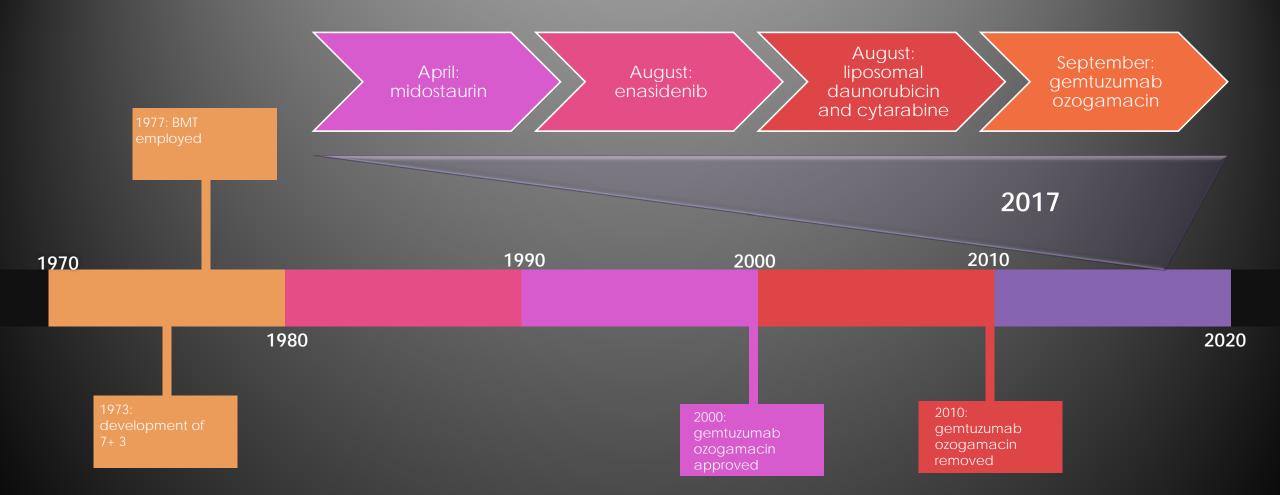
- Extracellular receptor targeted
- Taken up by endocytosis
- Lysosomal degradation
- Cell death
- Potential toxicity from drug efflux of cytotoxic agent

Overview New approvals/uses

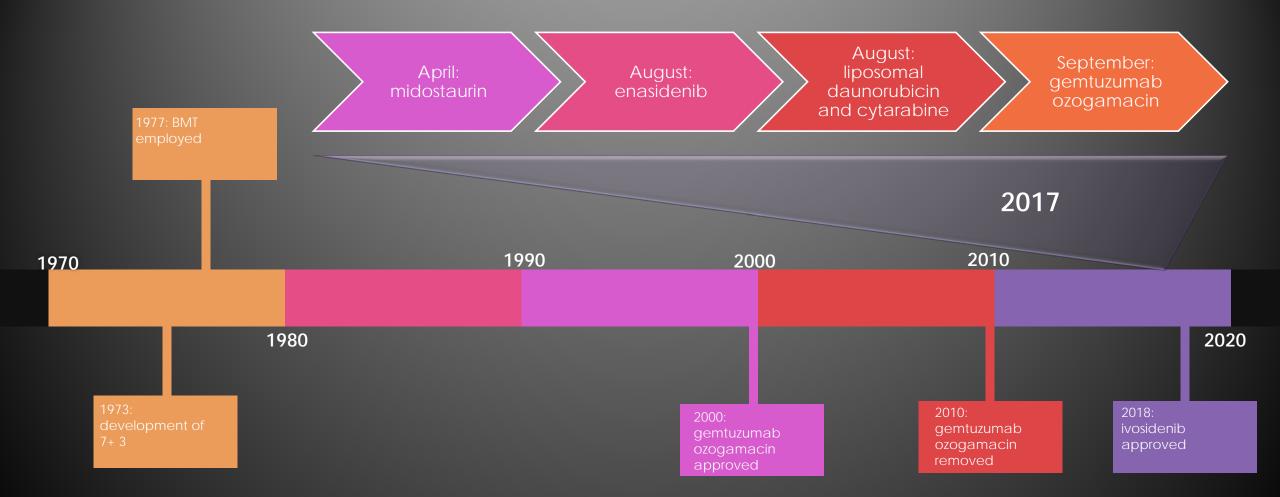
 \bigcirc

AML	ALL	CML	CLL
O midostaurinO enasidenib	o inotuzumab ozogamicin	o nilotinib	O rituximab and hyaluronidase
O liposomal	O blinatumomab		o venetoclax
daunorubicin and cytarabine combination	 tisagenlecleucel (CAR-T cells) 		
O gemtuzumab ozogamicin			

AML Standard treatment review


Standard treatment

- Intensive chemotherapy:
 - Induction
 - 7 + 3
 - Consolidation
 - High dose chemo
 - BMT
- O Salvage
- O HMAs; azacitidine, decitabine


Update to treatment options

- O midostaurin
- O enasidenib
- liposomal daunorubicin and cytarabine combination
- O gemtuzumab ozogamicin
- O ivosidenib

Landmark Year for AML: 2017

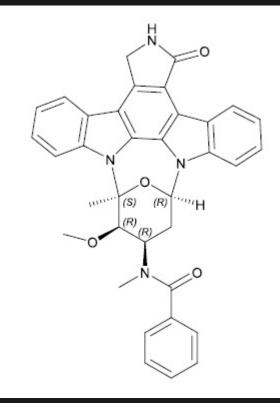
Landmark Year for AML: 2017

AML New application of class (FLT-3 inhibitor)

O FLT-3 is a transmembrane tyrosine kinase receptor

- Mutation in FLT-3 is known to confer poorer prognosis in AML
 - Internal tandem duplication (FLT-3 ITD)
 - Point mutation of the tyrosine kinase domain (FLT-3 TKD)

O Mechanism is to prevent FLT-3 signaling

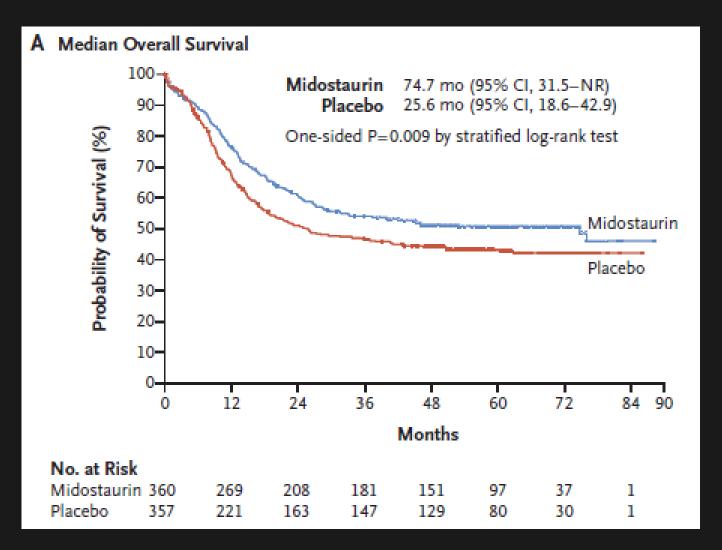


O Midostaurin

O First approved FLT-3 inhibitor for AML

• Small molecule multi kinase inhibitor

• More FLT-3 inhibitors are pending FDA approval

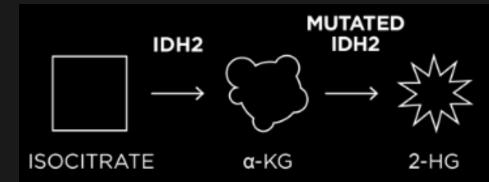

AML Midostaurin

Approval was based on phase III study

Midostaurin plus chemotherapy (7+3) in previously untreated FLT3 positive AML

Hazard ratio

0.78 95% CI(0.63-0.96)


o May be used in combination with standard 7+3 for newly diagnosed FLT3 positive AML

Drug	Dose	Route	Schedule	Toxicities	Other
midostaurin	50 mg BID	PO	Days 8-21 of induction and consolidation cycles	 GI toxicity Pulmonary toxicity May cause QT prolongation 	 Potential drug interactions Antifungals Logistical challenges

AML New class (isocitrate dehydrogenase inhibitor)

O IDH performs an enzymatic step for myeloid differentiation

- Mutated IDH produces an oncometabolite 2-HG
 - 2-HG blocks differentiation
- Oral small molecule inhibitor of the IDH protein
 - Mechanism is to inhibit mutant IDH variants
 - Allows for differentiation without cytotoxicity

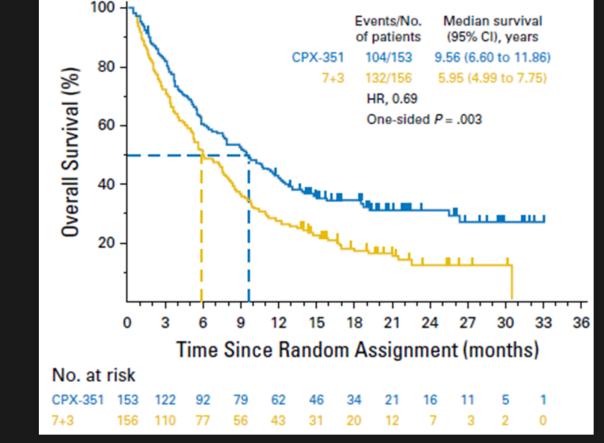
O Enasidenib

O First in class

- Inhibits the IDH2 protein
 - Mutant IDH2 is inhibited at much lower concentrations than the wild type enzyme
 - Intracellular levels of 2-HG are reduced in blood samples of patients with IDH2 mutated AML

O Accelerated approval is for use in r/r AML with IDH2 mutation

• Approval is based on phase 1/2 (non-randomized) data



o FDA approved for use in IDH2 mutated relapsed or refractory disease

Drug	Dose	Route	Schedule	Toxicities	Other
enasidenib	100 mg daily	PO	Until progression	 Differentiation syndrome Leukocytosis Electrolyte imbalance GI disturbance Hepatotoxicity TLS 	 Response may be delayed

AML Liposomal daunorubicin and cytarabine

- Iiposomal daunorubicin and cytarabine
 - Dual drug liposomal encapsulation of cytarabine and daunorubicin
 - Fixed ratio of 1:5 molar equivalents for maximum synergy
 - Better uptake by leukemia cells

AML Liposomal daunorubicin and cytarabine administration

o May be used in therapy related AML or AML with myelodysplastic features

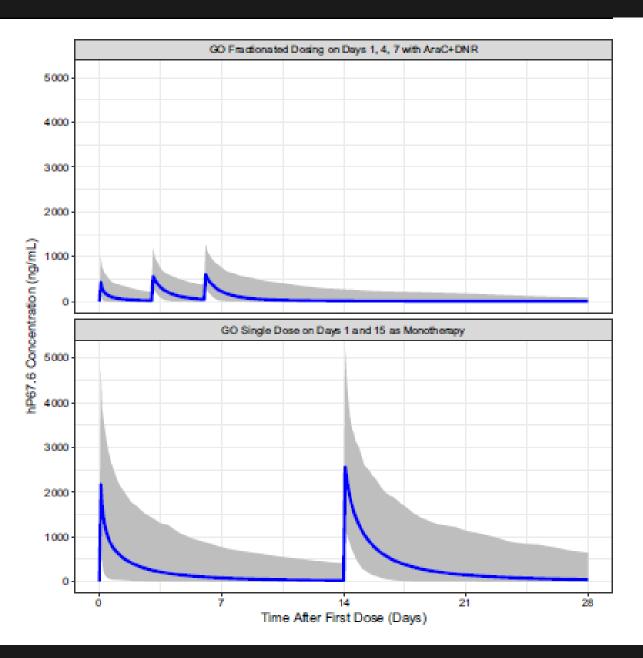
Drug	Dose	Route	Schedule	Toxicities	Other
liposomal daunorubicin and cytarabine (CPX-351)	mg/m2 over 90 inductio 29 mg/r mg/m2 over 90	cytarabin minutes o n n2 daunoi cytarabin	rubicin and 100 e (liposomal) IV n days 1, 3, 5 of rubicin and 65 e (liposomal) IV n days 1 and 3	 Typical for 7+3 Extended hematologic toxicity Bleeding CNS Theoretical copper toxicity 	 Not interchangeable with standard daunorubicin and cytarabine Opportunity for outpatient administration?

O Gemtuzumab ozogamicin

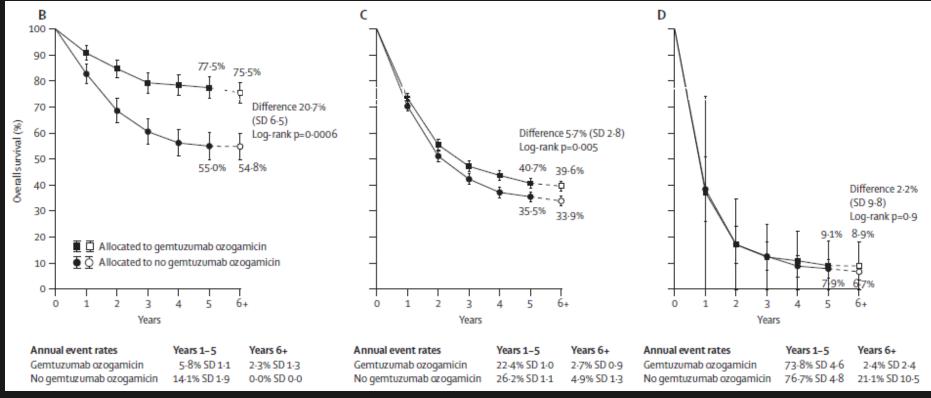
• Antibody targets CD33; delivers ozogamicin

O History

- Approved based on phase II data in 2000
- Post marketing data could not confirm benefit
- Concerning high rate of treatment related mortality
 - Removed from market in 2010


\equiv	WSJ
	n fizer to Withdraw a ancer Drug Mylotarg
	<i>Tennifer Corbett Dooren</i> ated June 22, 2010 12:01 a.m. ET
	SHINGTON—The Food and Drug

Administration said Monday Pfizer Inc. PFE 0.59% A is withdrawing its cancer drug Mylotarg from the U.S. market after a clinical study showed the drug wasn't effective and had more safety problems.

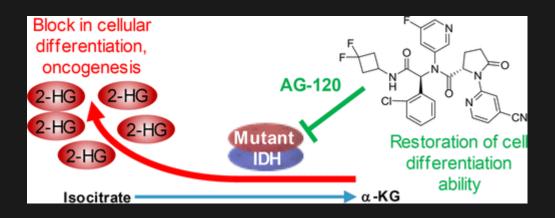

Subsequent trials evaluated different dosing schemes

Fractionated dosing

- Smaller doses
- More frequent

2014 meta-analysis evaluating GO in combination with chemotherapy

Hills RK, et al. Lancet Oncology 2014;15:986-996.


o May be used in CD33 positive AML in combination with 7+3 or as monotherapy

Drug	Dose	Route	Schedule	Toxic	ities	O	ther
gemtuzumab ozogamacin	IV over 2 induction consolida Monothe and 3 mg	hours on d a; 3 mg/m2 ation cycles rapy: 6 mg. g/m2 IV on	m2 (max 4.5 mg) ays 1, 4 and 7 of IV on day 1 of 2 /m2 IV on day 1 day 8 of induction; weeks x 8 doses	oc (sin ob syn • My • Po pro	epatotoxicity; veno- iclusive disease husoidal estruction hdrome) (elosuppression tential QT blongation emorrhage	•	Premedicate for infusion reaction Potential outpatient treatment?

O Ivosidenib

- First in class (inhibits IDH1 protein)
- Developed for use in AML with IDH1 mutation
- Approval is based on phase 1/2 (non-randomized) data

o FDA approved for use in IDH1 mutated relapsed or refractory disease

Drug	Dose	Route	Schedule	Toxicities	Other
ivosidenib	500 mg daily	PO	Until progression	 Differentiation syndrome Leukocytosis Prolonged QT GI disturbance Hepatotoxicity TLS 	 Response may be delayed Drug interactions

CML Standard treatment review

Standard treatment

- O Chronic phase
- Tyrosine kinase inhibitors
 - imatinib
 - dasatinib
 - nilotinib
 - bosutinib
 - ponatanib

Update to treatment options

O nilotinib

• FDA approved labeling for potential discontinuation

• The Philadelphia chromosome associated tyrosine kinase was first inhibited clinically with a small molecule compound – imatinib

 "2nd generation" tyrosine kinase inhibitors were then developed and provided alternatives when variants of the BCR-ABL gene demonstrated resistance

CML TKIs

5-year absolute OS (95% CI); 312 assessed	5-year relative OS (95% CI)	5-year OS in general population (95% CI)	100 - 80 -		┺┿╋┿┿┲╋┑╾╋┯╼╼╼╼╼		┿╫╫╵╫╫ <mark>╞╎╌┍╶┱</mark> ╵┷╌┶╾╼╲╌╲╸	╉┼┼┼┼┼┶ _{┺╋╋┿╋}		p=0·33
92.7% (90.1–95.3)	94.7% (92.1–97.4)	97.8% (97.6–98.2)	Overall survival (%) - 09					, III - 1	┶╌┑ ╵╫╌╻ _{╋┿}	►+ <u>†</u>
10-year absolute OS (95% CI); 127 assessed	10-year relative OS (95% Cl)	10-year OS in general population (95% CI)	20- 0-	— A	ge 15–44 years ge 45–64 years ge 65–84 years 4	48	72	96	120	p<0.0001 ┘ 144
			Number at risk		-1	10	Time (months)			
83.5% (79.2–87.9)	88·2% (83·7–92·9)	94.6% (94.2–95.4)	Age 15–44 years 19 Age 45–64 years 22 Age 65–84 years 6	22	174 199 56	146 160 47	115 126 38	92 97 32	48 58 21	11 14 5

CML TKIS

O Improved overall survival changes the focus of management

- Agent selection is important
 - Consider adverse effect profile and patient comorbidities
 - Resistance
- Long term management strategies should emphasize adherence
- Teratogenicity
- Trials have investigated some discontinuation strategies

CML TKI discontinuation

As of 2017; NCCN has developed criteria for potential discontinuation. Outside of a clinical trial, TKI discontinuation should be considered only if ALL of the criteria included in the list below are met.

Chronic phase; no history of accelerated or blast phase

Previously quantifiable BCR-ABL1 transcript

Stable MR; greater than 2 years

Access to reliable qPCR with results available within 2 weeks

Monthly initial molecular monitoring

Ability to restart TKI within 4 weeks of loss of response

Consultation with a CML specialty center

NCCN Guidelines for Chronic Myeloid Leukemia. Version 4.2018.

o May be used as initial treatment for newly diagnosed CML chronic phase

Drug	Dose	Route	Schedule	Toxicities	Other
nilotinib	400 mg BID	ΡΟ	Until progression; may consider d/c after 3 years in certain circumstances	 Bone marrow suppression Fluid retention QT prolongation Electrolyte imbalance Vascular disease 	 May be used for some mutations demonstrating resistance to TKIs

ALL Standard treatment review

Standard treatment

O Induction

- Vincristine, anthracycline, cyclophosphamide, corticosteroids and pegaspargase
- Hyper CVAD
- +/- TKI
- O Consolidation
 - Multi-agent chemotherapy, BMT
- O Maintenance
- CNS prophylaxis throughout
- Relapsed/refractory
 - Blinatumomab

Update to treatment options

- O Inotuzumab ozogamicin
- O Blinatumomab
- O Tisagenlecleucel (CAR-T cells)

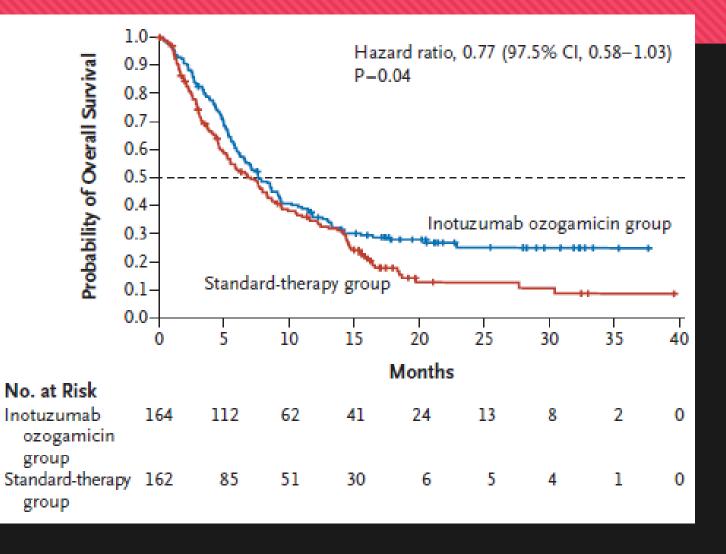
O Inotuzumab ozogamicin

- Developed to target cell surface glycoprotein CD22 (90% of B cell ALL)
- Antibody targets CD22 expressing leukemic cells; delivers ozogamicin
- InO was associated with better remission rates and when compared with SOC in patients with relapsed disease

ALL Inotuzumab ozogamacin

	The NEW ENGL	AND JOURNAL of i	MEDICINE			
	OR:	IGINAL ARTICLE				
Inot	uzumab Ozo	ogamicin ve	ersus Standa	rd		
Thera	py for Acut	e Lymphobl	astic Leuker	nia		
Matthia Wei Kongr	ndy Stock, M.D., Nico ning Wang, Ph.D., Ta	ann i Martinelli, M.D., da Gökbuget, M.D., S o Wang, Ph.D., M. Lu	, Michaela Liedtke, M).,		
End Point		Ozogamicin Sup	\$t and ard-Therapy Group		Be tw een-Group Difference (97.5% CI)	P Valueĵ
	no./total no.	% (95% CI)	no./total no.	% (95% CI)	percentage points	
Complete remission or complete remission with incomplete hematologic recovery						
Total	88/109	80.7 (72.1–87.7)	32/109	29.4 (21.0–38.8)	51.4 (38.4–64.3)	<0.001
Bone marrow blast results below threshold for minimal residual disease	69/88	78.4 (68.4–86.5)	9/32	28.1 (13.7–46.7)	50.3 (29.9–70.6)	<0.001

Kantarjian HM, et al. N Engl J Med 2016;375:740-53.

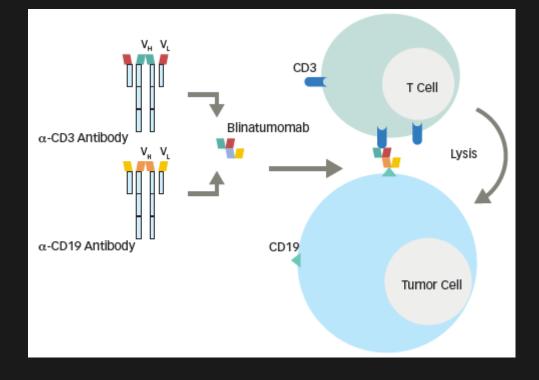

ALL Inotuzumab ozogamacin

	The NEW ENGL	AND JOURNAL of i	MEDICINE			
	ORIGINAL ARTICLE					
	izumab Ozo py for Acuto	T				
Matthia Wer Kongn	łagop M. Kantarjian, s Stelljes, M.D., Giov ndy Stock, M.D., Nice ning Wang, Ph.D., Ta sight, M.D., Erik Vand	ann i Martinelli, M.D., Ia Gökbuget, M.D., S o Wang, Ph.D., M. Lu	Michaela Liedtke, M usan O'Brien, M.D., isa Paccagnella, Ph.I	D.,		
End Point	Ino‡uzumab Ozogamicin Group		Standard-Therapy Group		Be tw een-Group Difference (97.5% ⊂I)	P Valueĵ
	no./total no.	% (95% CI)	no./total no.	% (95% CI)	percentage points	
Complete remission or complete remission with incomplete hematologic recovery						
Total	88/109	80.7 (72.1–87.7)	32/109	29.4 (21.0–38.8)	51.4 (38.4–64.3)	<0.001
Bone marrow blast results below threshold for minimal residual disease	69/88	78.4 (68.4–86.5)	9/32	28.1 (13.7–46.7)	50.3 (29.9–70.6)	<0.001

Kantarjian HM, et al. N Engl J Med 2016;375:740-53.

ALL Inotuzumab ozogamacin

 Median OS 7.7 months for InO (95% CI, 6.0 to 9.2) versus 6.7 months for SOC (95% CI, 4.9 to 8.3)


ALL Inotuzumab ozogamacin

o May be used in relapsed/refractory B cell ALL

Drug	Dose	Route	Schedule	Тс	oxicities	0)ther
inotuzumab ozogamacin	followed 15 of a 21 28 day in Subseque response and 15 of	by 0.5 mg/ I day cycle duction cyc ent cycles v : 0.5 mg/m2 f a 28 day c	2 IV on day 1, m2 on days 8 and (may repeat as a cle) with a complete 2 IV on days 1, 8 cycle (up to 6 proceeding to	:	Hepatotoxicity; veno- occlusive disease (sinusoidal obstruction syndrome) Myelosuppression Potential QT prolongation Hemorrhage	•	Premedicate for infusion reaction Potential outpatient treatment?

ALL Blinatumomab

- O Blinatumomab
 - Bi-specific T cell engager (BiTE)
 - Linker between T cells and tumor cells expressing CD19
- Previously approved for relapsed/refractory ALL
 - New use is for first remission with minimal residual disease positivity

ALL Blinatumomab

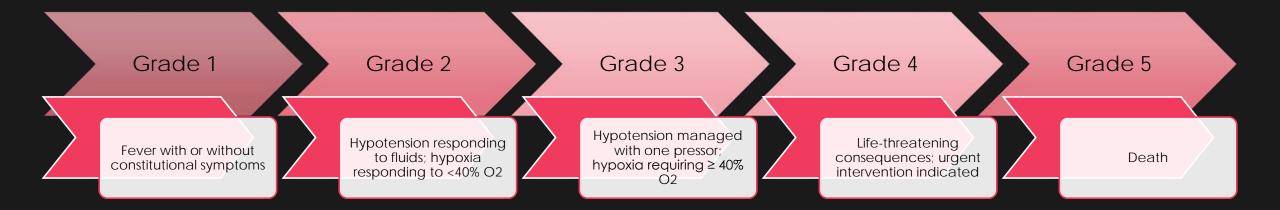
 May be used following first induction for previously untreated ALL with minimal residual disease or for relapsed or refractory ALL

Drug	Dose	Route	Schedule	Toxic	cities	Other
blinatumomab	Induction days 1-7, on days 8 cycle Subseque	followed b 8-28 of a 6 v ent cycles:	on ncg daily on oy 28 mcg daily week treatment 28 mcg daily on week treatment	syr	ytokine release ndrome eurotoxicity	 Admission required for start of each cycle Special warning for preparation and administration errors

ALL Tisagenlecleucel CAR-T cells

O CAR-T cells

- Lymphodepleting chemotherapy followed by autologous tisagenlecleucel infusion
 - T cells are removed and modified in the lab for the addition of a chimeric antigen receptor (CAR)
 - T cells are re-infused and recognize cells expressing CD19 to eliminate tumor cells
- Who can get this treatment?
 - B cell ALL in second or greater relapse, not eligible for transplant
 - Age < 26
 - Not required to be in remission
- O Major toxicities
 - Cytokine release syndrome
 - Neurotoxicity


ALL Cytokine release syndrome

- Cytokine release syndrome is an immunologic reaction
- Significant (temporary) inflammatory cytokine production
 - IL-6, IL-10 and INF-γ
- Fever, hypotension, respiratory failure, coagulopathies
 - May progress to multi-organ failure and death
- O Management
 - Stop infusion
 - Corticosteroids
 - Tocilizumab

ALL Cytokine release syndrome

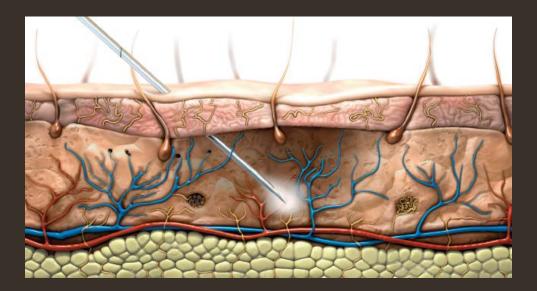
Common Terminology Criteria for Adverse Events

Definition: A disorder characterized by fever, tachypnea, headache, tachycardia, hypotension, rash, and/or hypoxia caused by the release of cytokines.

CTCAE v5.0 - November 27, 2017 . Accessed April 5, 2018.

CLL Standard treatment review

Standard treatment


- First line regimens
 - fludarabine, cyclophosphamide and rituximab (FCR)
 - bendamustine with CD20 monoclonal antibody
 - chlorambucil with CD20 monoclonal antibody
 - ibrutinib
- Relapsed/refractory
 - venetoclax
 - idelalisib +/- rituximab

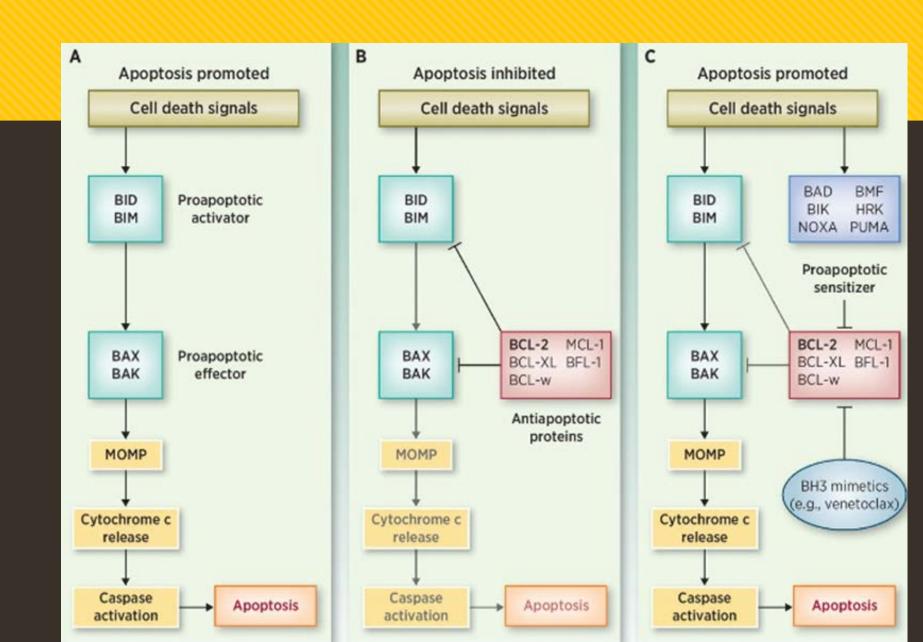
Update to treatment options

- New formulation of rituximab
 - rituximab and hyaluronidase
- venetoclax (with rituximab)

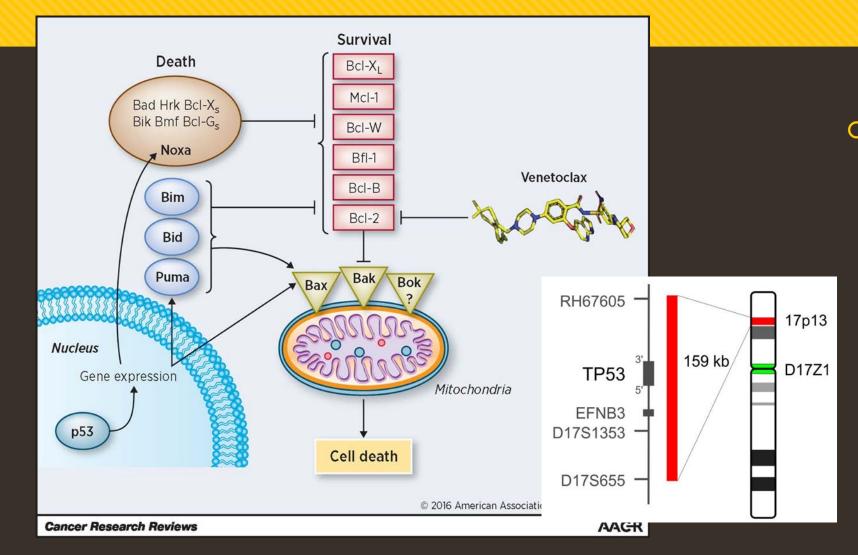
CLL Rituximab and hyaluronidase

- Rituximab and hyaluronidase for subcutaneous administration
 - Aims to increase patient satisfaction
 - Efficacy and safety appear comparable
 - Uses hyaluronidase
 - Facilitates absorption

CLL Rituximab and hyaluronidase

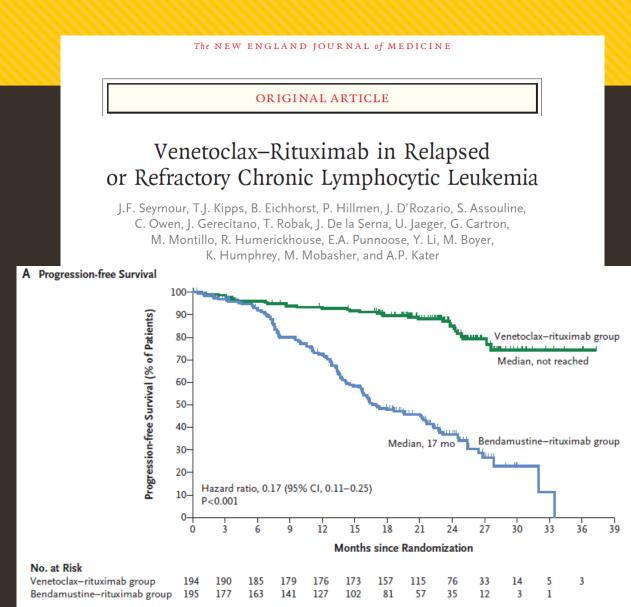

o May be used in CLL in combination with chemotherapy (FCR)

Drug	Dose	Route	Schedule	Toxicities	Other
rituximab and hyaluronidase	1600 mg/ 26800 units (fixed dose) Volume: 13.4 mL	SubQ over 7 min	Day 1 of each cycle	 Similar to IV rituximab local site reactions 	 Cycle 1 should be given as IV rituximab Observe patients for 15 min following SubQ injection


CLL Venetoclax

• Small molecule BCL2 inhibitor

- Targets mitochondrial pathway of apoptosis
- Inhibits antiapoptotic proteins


 Identified as target for CLL with chromosomal abnormality (deletion of 17p)

- Approved for use in refractory CLL with 17p deletion in 2016
- Approval was based on non-randomized phase 2 data

CLL Venetoclax

• Randomized, open-label, phase 3 trial

- 389 participants with relapsed or refractory CLL
- bendamustine/rituximab v. venetoclax/ rituximab
- 2 yr rates of PFS were 84.9% for VR and 36.3% for BR
 - hazard ratio 0.17, 95% CI 0.11 to 0.25; P < 0.001</p>

Seymour JF, et al. N Engl J Med 2018;378:1107-20.

o May be used in relapsed/refractory CLL

Drug	Dose	Toxicities	Other
venetoclax	Start at 20 mg PO daily, titrate up to 400 mg PO daily	 TLS Neutropenia Severe thrombocytopenia 	 Dose is escalated in weekly increments over 5 weeks to mitigate risk for TLS Premeds may include hydration and TLS prophylaxis depending on risk Potential for drug-drug interactions May require dose reduction

Investigational Venetoclax and HMAs in AML

• Venetoclax in combination with hypomethylating agents in AML

- The anti-apoptotic protein BCL2 is over expressed in most AMLs
- HMAs have established use in AML for patients not able to tolerate intensive chemotherapy
- The combination has synergistic potential

Investigational Venetoclax and HMAs in AML

- Data from a phase 1b trial was published in January 2018
 - 57 previously untreated patients were enrolled in a dose finding study

	Group A (n=23)	Group B (n⊨22)	Group C (n=12)
Complete remission	8 (35%)	6 (27%)	0
CRi	6 (26%)	7 (32%)	8 (67%)
Partial remission	1 (4%)	0	0
MLFS*	2 (9%)	5 (23%)	0
Resistant disease	3 (13%)	2 (9%)	3 (25%)
Non-evaluable†	3 (13%)	2 (9%)	1 (8%)
Complete remission and CRi	14 (61%)	13 (59%)	8 (67%)
Overall response‡	15 (65%)	13 (59%)	8 (67%)
Overall outcome§	17 (74%)	18 (82%)	8 (67%)

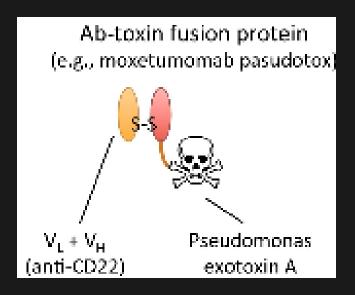
Data are n (%). CRi=complete remission with incomplete marrow recovery. MLFS=morphologically leukaemia-free state. *Less than 5% blasts in an aspirate sample with marrow spicules and a count of 200 or more nucleated cells. †Includes five patients who discontinued before end of cycle 1 because of adverse events of infections; one patient was found to have CNS leukaemia on day 7. ‡Including complete remission, CRi, and partial remission. §Including overall response and MLFS.

Investigational Venetoclax and HMAs in AML

- Data from a phase 1b trial was published in January 2018
 - 57 previously untreated patients were enrolled in a dose finding study

	Group A (n=23)	Group B (n=22)	Group C (n=12)
Complete remission	8 (35%)	6 (27%)	0
CRi	6 (26%)	7 (32%)	8 (67%)
Partial remission	1 (4%)	0	0
MLFS*	2 (9%)	5 (23%)	0
Resistant disease	3 (13%)	2 (9%)	3 (25%)
Non-evaluable†	3 (13%)	2 (9%)	1 (8%)
Complete remission and CRi	14 (61%)	13 (59%)	8 (67%)
Overall response‡	15 (65%)	13 (59%)	8 (67%)
Overall outcome§	17 (74%)	18 (82%)	8 (67%)

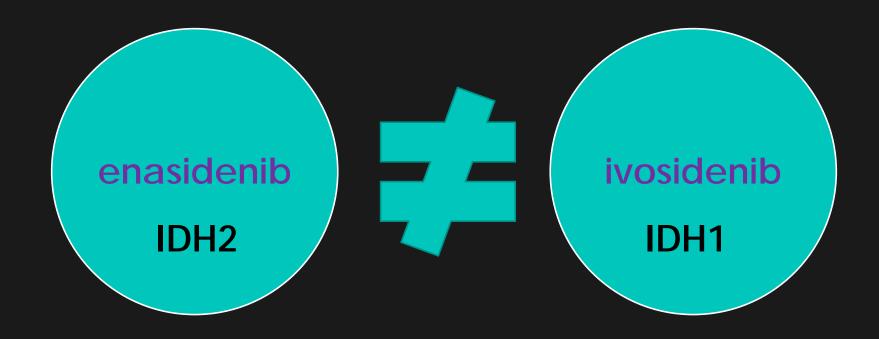
Data are n (%). CRi=complete remission with incomplete marrow recovery. MLFS=morphologically leukaemia-free state. *Less than 5% blasts in an aspirate sample with marrow spicules and a count of 200 or more nucleated cells. †Includes five patients who discontinued before end of cycle 1 because of adverse events of infections; one patient was found to have CNS leukaemia on day 7. ‡Including complete remission, CRi, and partial remission. §Including overall response and MLFS.


Investigational New combinations not FDA approved

• Venetoclax in combination with hypomethylating agents in AML

- Investigational
- Phase III evaluation with comparator group is ongoing
- Other potential for venetoclax
 - Combination with FLT-3 inhibitors; liposomal daunorubicin and cytarabine
 - Younger patients

New FDA Approval in Hairy Cell Leukemia


- Moxetumomab pasudotox
 - Antibody toxin fusion protein targeting CD22
- Approved for relapsed or refractory hairy cell leukemia
- Given as a 30 minute IV infusion on days 1, 3 and 5 of a 28 day cycle for up to 6 cycles
- Warnings:
 - Capillary leak syndrome
 - Hemolytic uremic syndrome
 - Renal toxicity

Drug Information and Approval Notifications

- New drugs:
 - Check the manufacturer's website for the most recent version of the prescribing information
- New literature:
 - Follow on social media professional organizations and journals
- Notifications for FDA approvals:
 - Sign up at FDA.gov to get updates on new oncology approvals

Questions?

It's Better To Know How To Learn Than To Know.

-DR. SEUSS

References

- 1. Stone RM, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017 Published Online June 23, 2017.
- 2. Rydapt [prescribing information] 2017; Novartis Pharmaceuticals Corporation, East Hanover, NJ.
- 3. Idhifa [prescribing information] 2017; Celgene Corporation, Summit, NJ.
- 4. Uy GL, et al. Multivariate efficacy analysis of a randomized, phase 3 study of CPX-351 versus 7+3 in older adults with treatment-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes. Blood. 2017; 130:2647.
- 5. Lancet JE, et al. CPX-351(cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. **JCO. 2018**; https://doi.org/10.1200/JCO.2017.77.6112.
- 6. Vyxeos [prescribing information] 2017; Jazz Pharmaceuticals, Inc., Palo Alto, CA.
- 7. Amadori S, et al. Gemtuzumab ozogamacin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. JCO. 2016; 34:972-979.
- 8. Hibma J, Knight, B. Population Pharmacokinetic Modeling of Gemtuzumab Ozogamicin in Adult Patients with Acute Myeloid Leukemia. Clinical Pharmacokinetics 2018; https://doi.org/10.1007/s40262-018-0699-5.
- 9. Mylotarg [prescribing information] 2017; Pfizer, Inc., Philadelphia, PA.
- 10. Sasaki K, et al. Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: analysis of patient data from six prospective clinical trials. Lancet Haematol 2015;2: e186–93.
- 11. NCCN Guidelines for Chronic Myeloid Leukemia. Version 4.2018.
- 12. Tasigna [prescribing information] 2018; Novartis Pharmaceuticals Corporation, East Hanover, NJ.
- 13. Bosulif [prescribing information] 2017; Pfizer Labs, New York, NY.
- 14. Blincyto [prescribing information] 2017; Amgen, Inc., Thousand Oaks, CA.
- 15. CTCAE v5.0 November 27, 2017 . Accessed April 5, 2018.
- 16. Kantarjian HM, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016 Published Online June 12, 2016.
- 17. Besponsa [prescribing information] 2017; Pfizer, Inc., Philadelphia, PA.
- 18. Rituxan Hycela [prescribing information] 2017; Genetech Inc., San Francisco, CA.

References

19. Seymour JF, et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2018; 378:1107-1120.

20. DiNardo CD, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-

randomised Venclexta [prescribing information] 2017; AbbVie, Inc., North Chicago, IL.

21. Tibsovo [prescribing information] 2018; Agios Pharmaceuticals, Inc., Cambridge, MA.

22. Lumoxiti [prescribing information] 2018; AstraZeneca Pharmaceuticals LP, Wilmington, DE.