RARE CHILDHOOD CANCERS

Robert Raphael, MD
Associate Director, Survivors of Childhood Cancer Program
UCSF Benioff Children’s Hospital Oakland
Disclosures

• No significant financial interests to disclose
• Off-label use of medications discussed
• Special thanks to Carlos Rodriguez-Galindo, MD
Rare Cancers

- General cancer incidence: 1.7 million cases/year in US
- Rare disease: < 200,000 cases/year (US Orphan Drug Act of 1983)
- Rare cancer:
 - < 15 per 100,000/year (National Cancer Institute 2004)
 - < 6 per 100,000/year (European RARECARE consortium 2011)
- 181 cancers meet RARECARE definition in US
 - 119 are very rare (≤ 0.5 per 100,000): 3% of all cancers
- Overall 20% of cancers in US considered rare
- Rare cancers are not so rare
Rare Cancers

- Digestive System: 36% rare, 56% common, 8% other
- Respiratory System: 12% rare, 68% common, 20% other
- Breast: 5% rare, 85% common, 10% other
- Female Genital System: 31% rare, 60% common, 9% other
- Male Genital System: 5% rare, 92% common, 3% other
- Urinary System: 6% rare, 89% common, 5% other
- Endocrine System: 6% rare, 93% common, 11% other
- Hematopoietic System: 38% rare, 51% common, 11% other
Rare Cancers

• Unique challenges of studying rare cancers:
 • Difficult to conduct clinical research
 • Logistics of identifying and enrolling patients
 • Lack of funding and awareness
 • Barriers to collaborative/international trials
 • Paucity of basic research
 • Limited biologic specimens
 • Few resources devoted to uncommon diseases
 • Delays in recognition and diagnosis
 • Limited treatment options due to lack of evidence
• 59% of rare tumors advanced stage at diagnosis (vs 45%)
• Decreased survival rates for rare vs common cancers
Rare Cancers

Survival: rare vs common (by age)

5-year relative survival (%)

- All ages: Rare 57.0, Common 74.5
- 0-19: Rare 92.2, Common 81.8
- 20-39: Rare 80.0, Common 88.0
- 40-64: Rare 60.5, Common 78.3
- 65-79: Rare 46.2, Common 72.8
- 80+: Rare 35.0, Common 59.8

CA Cancer J Clin 2017; 67; 261-272
Childhood Cancer

- 1,688,780 new cancers diagnosed in US in 2017
- Only 15,270 in children <20 years old
- Less than 1% of all US cancers are pediatric
- All childhood cancer is rare
- Second leading cause of mortality in children ages 1-14: estimated 1,190 cancer deaths in 2017
- Relative 5-year survival rate for pediatric cancer has increased from 58% in 1975 to 84% today
Childhood Cancer

Estimated New Cancer Cases, United States, 2017

<table>
<thead>
<tr>
<th>Site</th>
<th>New cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>1,688,780</td>
</tr>
<tr>
<td>Digestive</td>
<td>310,440</td>
</tr>
<tr>
<td>Genital</td>
<td>279,800</td>
</tr>
<tr>
<td>Breast</td>
<td>255,180</td>
</tr>
<tr>
<td>Respiratory</td>
<td>243,170</td>
</tr>
<tr>
<td>Urinary</td>
<td>146,650</td>
</tr>
<tr>
<td>Skin</td>
<td>95,360</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>80,500</td>
</tr>
<tr>
<td>Leukemia</td>
<td>62,130</td>
</tr>
<tr>
<td>Endocrine</td>
<td>59,250</td>
</tr>
<tr>
<td>Oral</td>
<td>49,670</td>
</tr>
<tr>
<td>Other</td>
<td>33,770</td>
</tr>
<tr>
<td>Myeloma</td>
<td>30,280</td>
</tr>
<tr>
<td>Brain/CNS</td>
<td>26,930</td>
</tr>
<tr>
<td>Bone/soft tissue</td>
<td>15,650</td>
</tr>
<tr>
<td>All Pediatric</td>
<td>15,270</td>
</tr>
</tbody>
</table>

Age-Specific (Crude) SEER Incidence Rates
By Cancer Site
All Ages, All Races, Both Sexes
2005–2014

Cancer sites include invasive cases only unless otherwise noted.

\(^1\)CA Cancer J Clin 2017; 67: 7-30
Childhood Cancer

Age-Adjusted SEER Incidence Rates
By Age
All Sites, All Races, Both Sexes
1975–2014 (SEER 9)

Cancer sites include invasive cases only unless otherwise noted.
Childhood Cancer

5-Year Relative Survival By Year Dx
By Age
All Sites, All Races, Both Sexes
1975-2013

Cancer sites include invasive cases only unless otherwise noted.
Childhood Cancer

5-Year Survival Rate, Age 0-19

<table>
<thead>
<tr>
<th>Condition</th>
<th>Survival Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>83.9%</td>
</tr>
<tr>
<td>Acute Lymphoblastic Leukemia</td>
<td>90%</td>
</tr>
<tr>
<td>Acute Myeloid Leukemia</td>
<td>65.7%</td>
</tr>
<tr>
<td>Hodgkin Lymphoma</td>
<td>97.2%</td>
</tr>
<tr>
<td>Non-Hodgkin Lymphoma</td>
<td>85.9%</td>
</tr>
<tr>
<td>Bone and Joint</td>
<td>74.6%</td>
</tr>
<tr>
<td>Brain and CNS</td>
<td>74.4%</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>74.1%</td>
</tr>
<tr>
<td>Soft Tissue</td>
<td>77.9%</td>
</tr>
<tr>
<td>Wilms Tumor</td>
<td>93.1%</td>
</tr>
</tbody>
</table>

Source: Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov)

SEER 9 area. Based on follow-up of patients into 2012
Childhood Cancer

- **Children are not little adults**
 - >90% of adult cancers are epithelial (carcinoma, melanoma)
 - >85% of pediatric cancers are mesenchymal (sarcoma, lymphoid, embryonal)
 - No link to environmental exposures in most childhood cancer
 - 8.5% of pediatric cancer associated with germline mutations in cancer-predisposing genes
- **Adolescent/young adult (AYA) age represents some overlap**
 - 21% of cancers in 15-19 year olds are epithelial tumors
 - Increased cancer incidence in AYA versus younger children
 - 1 per 100,000 for ages 0-14
 - 71 per 100,000 for ages 15-39
 - Decreased survival compared with younger children for some diagnoses
 - Leukemia: 74% ages 15-19 vs 91% ages 1-14

Cancer Distribution: Adults

<table>
<thead>
<tr>
<th>Estimated New Cases</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>161,360</td>
<td>252,710</td>
</tr>
<tr>
<td>Prostate</td>
<td>116,990</td>
<td>105,510</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>71,420</td>
<td>64,010</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>60,490</td>
<td>61,380</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>52,170</td>
<td>42,470</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
<td>40,610</td>
<td>34,940</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>40,080</td>
<td>32,160</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>36,290</td>
<td>25,840</td>
</tr>
<tr>
<td>Leukemia</td>
<td>35,720</td>
<td>25,700</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>29,200</td>
<td>23,380</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>30%</td>
<td>4%</td>
</tr>
<tr>
<td>All Sites</td>
<td>836,150</td>
<td>852,630</td>
</tr>
</tbody>
</table>
Cancer Distribution: All Children

A SEER Program

- Leukemia, 24.9%
- Hodgkin’s lymphoma, 7.6%
- CNS tumors, 17.6%
- Non-Hodgkin’s lymphoma, 6.5%
- Retinoblastoma, 2.1%
- Neuroblastoma, 5.0%
- Wilms’ tumor, 3.9%
- Osteosarcoma, 2.9%
- Ewing’s sarcoma, 1.7%
- Rhabdomyosarcoma, 2.9%
- Non-rhabdomyosarcoma STS, 4.2%
- Germ-cell tumor, 6.1%
- Thyroid cancer, 3.2%
- Melanoma, 3.0%
- ACT, 1.7%
- Other, 5.8%
Cancer Distribution: Young Children

Age-Adjusted and Age-Specific Cancer Incidence Rates for Patients Aged 0–14 Years (SEER 2009–2012)

- Leukemia: 31%
- CNS: 26%
- Lymphoma: 7%
- Soft tissue: 6%
- Neuroblastoma: 5%
- Renal: 4%
- Bone: 4%
- Epithelial: 3%
- Germ cell: 2%
- Retinoblastoma: 2%
- Liver: 10%
- Other: 4%
Cancer Distribution: Adolescents

Age-Adjusted and Age-Specific Cancer Incidence Rates for Patients Aged 15–19 Years (SEER 2009–2012)
Rare Childhood Cancers

• What is a rare pediatric cancer?
 • 71% of childhood/adolescent cancers considered rare by RARECARE definition (< 6 per 100,000/year)
 • All childhood cancer is rare

CA Cancer J Clin 2017; 67; 261-272
Defining Rare Childhood Cancers

- Underrepresented in pediatric oncology
 - Rare in childhood, not seen in adults
 - Rare in childhood, more common in adults
 - Rare variants of more common childhood cancers

- COG definition
 - Low prevalence in young patients, higher incidence in adults, epithelial origin
 - “Other malignant epithelial neoplasms and melanomas” in ICCC* subgroup of SEER database
 - Does not include some rare cancers seen only in children: pancreatoblastoma, pleuropulmonary blastoma

- EXPeRT** definition
 - Incidence ≤ 2 per million per year
 - Not considered in clinical trials

*International Classification of Childhood Cancer
**European Cooperative Study Group for Pediatric Rare Tumors
J Clin Oncol 2015; 33: 3047-3054
Defining Rare Childhood Cancers

- Rare cancers are not that rare
 - 11% of childhood cancers < age 20 (COG definition)
 - 75% occur in patients age 15-19 years

Fig 1. Annual incidence of (A) malignancies and (B) carcinomas and melanomas in those age < 20 years with proportion of specific histologies as coded according to SEER adolescent and young adult classification of International Classification of Diseases for Oncology (version 3), standardized to the 2000 US standard population.®

J Clin Oncol 2015; 33: 3047-3054
Studying Rare Childhood Cancers

- Surveillance, Epidemiology and End Results (SEER)
 - NCI program for studying cancer epidemiology since 1973
 - Incidence and survival statistics from registries covering 28% of U.S. population
 - 20 geographical regions
 - Represents ethnic mix of U.S. population
- Database includes
 - Demographics
 - Cancer site
 - Tumor markers
 - Stage
 - Treatment
 - Survival
- Childhood cancers listed by
 - Site (like adults)
 - ICCC* grouping

*International Classification of Childhood Cancer
Studying Rare Childhood Cancers

Childhood Cancer: SEER Incidence Rates 2010-2014 by ICCC Group (includes myelodysplastic syndromes and Group III benign brain) Under 20 Years of Age, Both Sexes, All Races

Age-Adjusted SEER Cancer Incidence and U.S. Death Rates, 2010-2014

By Primary Cancer Site

All Races, Males and Females

Ages 0-19

<table>
<thead>
<tr>
<th>Site</th>
<th>Incidence</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Males</td>
</tr>
<tr>
<td>All Sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Races</td>
<td>17.0</td>
<td>18.5</td>
</tr>
<tr>
<td>Whites</td>
<td>18.9</td>
<td>19.7</td>
</tr>
<tr>
<td>Blacks</td>
<td>13.7</td>
<td>13.8</td>
</tr>
<tr>
<td>Bone & Joint</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Brain & Other nervous</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Hodgkin lymphoma</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Kidney & Renal pelvis</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Leukemia</td>
<td>4.7</td>
<td>5.1</td>
</tr>
<tr>
<td>Acute lymphocytic</td>
<td>3.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Soft tissue</td>
<td>1.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

SEER Cancer Statistics Review 1975-2014
National Cancer Institute
Studying Rare Childhood Cancers

- Children’s Oncology Group (COG)
 - Only NCI-sponsored cooperative group in N. America
 - 80% of eligible children with cancer are enrolled on COG trials
- Children's Cancer Research Network (CCRN)
 - Registry for all pediatric cancer patients at US/Canadian COG centers
 - 42% of all pediatric oncology patients registered in first 2 years
 - 56,886 patients enrolled 2007-2017
- Project: EveryChild
 - New master protocol with combined registry and biospecimen repository
 - Starting 2017: replaces CCRN and individual disease-specific biology studies
- COG Rare Tumors Committee – since 2002
 - Liver tumors
 - Germ cell tumors
 - Retinoblastoma (since 2008)
 - Infrequent tumors
Studying Rare Childhood Cancers

COG Project: Every Child

- Eligible Patients
- Project: Every Child
 - Data Repository
 - Demographic information
 - Epidemiological information
 - Disease-Specific Data
- Biorepository
 - Tumor/Bone Marrow (snap frozen, fixed, fresh)
 - Whole blood (or saliva)
 - Serum
 - Parental DNA (if possible)
 - Disease-Specific Specimens

COG Rare Tumors Committee

- Rare Tumors (Prior)
 - Liver Tumors
 - Germ Cell Tumors
 - Infrequent Tumors
- Retinoblastoma
 - 2008
 - Rare Tumors Committee
- To achieve maximal cure rates for children with rare cancers
 - Clinical trials that maximize efficacy and minimize toxicity
 - Epidemiologic and basic science research
 - Trans-disciplinary approach
 - Overarching initiatives

COG Therapeutic Trial or Treatment

- Disease-Specific Treatment
 - Systemic therapy
 - Local control
 - Key Toxicity Data
- Disease-Specific Specimens

Outcomes

- Disease Outcomes
 - Long-term Key Toxicity Data
 - Second Malignancies
- Disease-Specific Specimens
Studying Rare Childhood Cancers

- EXPeRT (European Cooperative Study Group for Pediatric Rare Tumors) – since 2008
 - International collaboration: Italy, France, UK, Poland, Germany
 - Aims:
 - Develop recommendations
 - Collect clinical data
 - Identify experts
 - Establish collaborative networks
 - Conduct clinical, pathological, biological studies
 - Examples:
 - Pancreatoblastoma
 - Sertoli-Leydig cell tumors
 - Pleuropulmonary blastoma
Studying Rare Childhood Cancers

- Individual registries

International Pediatric Adrenocortical Tumors Registry
IRHDR
Ovarian and Testicular Stromal Tumor Registry
INTERNATIONAL NUT MIDLINE CARCINOMA REGISTRY
fibrolamellar registry
The link between patients and science
MTC REGISTRY CONSORTIUM
THE DESMOID TUMOR RESEARCH FOUNDATION
National Organization for Rare Disorders
Studying Rare Childhood Cancers

Challenges:

- Registry data
 - Only 7% of expected number captured in original COG registry (2002-2007)
 - Only 2.4% of expected rare tumor cases in CCRN (2008-2013)
 - Lack of awareness of individual registries

- Biospecimen repository gap
 - Only 11% of rare tumors in COG registry (9% in CCRN) have banked tissue available
 - Need for molecular studies to understand pathophysiology and therapeutic targets

J Clin Oncol 2010; 28: 5011-5016
J Clin Oncol 2015; 33: 3047-3054
Studying Rare Childhood Cancers

Challenges:

- **AYA patients (ages 15-19 years)**
 - 75% of rare childhood tumors
 - Cancer incidence double that in younger children
 - Participation in NCI-sponsored trials ¼ the rate in children <15
 - Cooperative group registration rate 24% vs 71% for younger
 - Less likely to be seen in pediatric cancer centers
 - More likely to be managed exclusively by surgeons/other specialties

Table 1. Patient Cases Registered in CCRN COG Trial From 2008 to 2013 Compared With Expected Patient Cases During Same Time Period Based on SEER Estimates

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>0 to 4</th>
<th></th>
<th>5 to 9</th>
<th></th>
<th>10 to 14</th>
<th></th>
<th>15 to 19</th>
<th></th>
<th>All</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td>Expected</td>
<td>Observed</td>
<td>Expected</td>
<td>Observed</td>
<td>Expected</td>
<td>Observed</td>
<td>Expected</td>
<td>Observed</td>
<td>Expected</td>
</tr>
<tr>
<td>Adrenocortical carcinoma</td>
<td>29</td>
<td>162</td>
<td>9</td>
<td>36</td>
<td>17</td>
<td>86</td>
<td>9</td>
<td>72</td>
<td>64</td>
<td>336</td>
</tr>
<tr>
<td>Colon carcinoma</td>
<td>13</td>
<td>64</td>
<td>13</td>
<td>186</td>
<td>37</td>
<td>736</td>
<td>47</td>
<td>3,396</td>
<td>110</td>
<td>4,452</td>
</tr>
<tr>
<td>Melanoma (cutaneous)</td>
<td>20</td>
<td>324</td>
<td>41</td>
<td>582</td>
<td>54</td>
<td>1,404</td>
<td>47</td>
<td>5,922</td>
<td>162</td>
<td>8,292</td>
</tr>
<tr>
<td>Nasopharyngeal carcinoma</td>
<td>27</td>
<td>18</td>
<td>36</td>
<td>162</td>
<td>77</td>
<td>906</td>
<td>53</td>
<td>1,692</td>
<td>193</td>
<td>2,778</td>
</tr>
<tr>
<td>Thyroid carcinoma</td>
<td>0</td>
<td>66</td>
<td>14</td>
<td>444</td>
<td>44</td>
<td>2,202</td>
<td>47</td>
<td>7,854</td>
<td>105</td>
<td>10,566</td>
</tr>
</tbody>
</table>

Abbreviations: COG, Children’s Oncology Group; CCRN, Children’s Cancer Research Network.
Studying Rare Childhood Cancers

Challenges:
- Clinical trial development
 - Low participation among COG centers for rare tumor trials
 - Low participation among non-COG centers for pediatric patients
 - Children excluded from clinical trials oriented to “adult” malignancies
 - Numbers too small for randomized trials
 - Barriers to international cooperation
- COG Infrequent Tumor Subcommittee trials
 - Melanoma
 - COG collaboration with ECOG and SWOG for 2 randomized trials
 - Only 4 children enrolled over 4 years
 - Nasopharyngeal carcinoma: ARAR0331
 - Slow accrual: 111 patients enrolled 2006-2012
 - Adrenocortical carcinoma: ARAR0332
 - 78 patients enrolled 2006-2013
 - Required significant participation by collaborating Brazilian centers
Rare Childhood Cancers: Examples

- Adrenocortical Carcinoma
- Colon cancer
- Melanoma
- Desmoid Tumors
- Gastrointestinal Stromal Tumors (GIST)
- Germ Cell Tumors
- Liver Tumors
- Malignant rhabdoid tumors
- Nasopharyngeal Carcinoma
- Neuroendocrine Tumors
- NUT Midline Carcinoma
- Pancreatic Tumors
- Pleuropulmonary Blastoma (PPB)
- Retinoblastoma
- Sex Cord-Stromal Tumors
- Thyroid Tumors
Adrenocortical Carcinoma

Adrenocortical carcinomas are rare tumors that account for 0.5–0.2% of all malignancies. In the first stage, the tumor is no more than 5 cm in length and is confined to the adrenal gland. In the second stage, it remains confined to the adrenal gland, but is larger than 5 cm. The third stage is characterized by the spread of the tumor to the lymph nodes, but not to any surrounding organs.

Stage IV
In the fourth stage, the tumor has grown into the area around the adrenal gland and has invaded the lymph nodes and other contiguous structures or organs. Large tumors can press on organs in the abdomen, causing symptoms of pain and feelings of fullness. The most common sites of metastasis are usually the lungs, retroperitoneal lymph nodes, the liver, and bones.
Adrenocortical Carcinoma

- Incidence in US: 0.72 per million
- Incidence in children: 0.2 per million
 - 25 cases per year
 - 0.2% of pediatric cancers
- Age distribution
 - Bimodal peaks in 1st and 4th decades of life
 - Median age in children: 3-4 years (second peak in adolescence)
- Geographical variation: 10-15 x higher incidence in Brazil
Adrenocortical Carcinoma

• Biology
 • Adrenal cortex produces:
 • Cortisol/aldosterone
 • Testosterone/estrogen
 • Adrenal medulla
 • Produces adrenaline/noradrenaline
 • Medullary tumors:
 • Pheochromocytoma
 • Neuroblastoma

• Genetics
 • Germline TP53 mutation
 • Li-Fraumeni syndrome: risk for ACC, sarcomas, leukemia, breast, brain cancer
 • Over 50% of American/European cases
 • 95% of Brazilian cases (unique mutation, no increased risk of other cancers)
 • Beckwith-Wiedemann syndrome, MEN type 1
Adrenocortical Carcinoma

- **Clinical features**
 - Virilization +/- Cushing syndrome in 80%
 - Hypertensive crisis in 10%
 - Abdominal pain
 - Two-thirds present with localized disease
- **Prognosis**: 5-year survival 54-74% in children
- **Risk factors**
 - Larger tumor size
 - Age over 4-5 years
 - Stage/metastases
 - Incomplete resection
- **Treatment**
 - Surgery (avoid tumor spillage)
 - Mitotane/chemo for incomplete resection
 - Little data in children
Adrenocortical Carcinoma

- COG trial ARAR0332
 - Open 2006-2013 in US and Brazil
 - 78 patients enrolled
 - Strategy:
 - Stage I: surgery
 - Stage II: extended surgery (RPLND)
 - Stage III/IV: surgery + chemo
 - Conclusions (unpublished):
 - Excellent outcome for stage I: 3-year EFS 88.9%/OS 92.3%
 - RPLND for stage II did not improve outcome: 53.3%/86.2%
 - Good outcome for stage III with surgery + chemo: 77%/100%
 - Poor outcome for stage IV: 13% OS
 - Highly toxic chemotherapy regimen (mitotane + cisplatin/etoposide/doxorubicin)
- Future Trial
 - Mitotane/chemotherapy for stage II?
 - New chemotherapy regimen for stage III/IV?
Colorectal Cancer
Colorectal Cancer

- Adults
 - Third most common malignant tumor
 - 90% of cases present > age 50 years
 - Preceded by adenomatous polyps
 - Slow malignant transformation
 - Risk factors:
 - Age, family history, race
 - IBD, FAP, HNPCC, prior radiation
 - Obesity, alcohol, tobacco
- Children/adolescents
 - Annual incidence 1 per million < age 20 in US
 - 1% of all pediatric malignancies
 - Fewer than 100 cases/year in US
 - Predisposing syndromes more common than adults but unknown rate
Pediatric Colorectal Cancer

- SEER review
 - 159 pediatric cases 1973-2005
- National Cancer Database review
 - 918 pediatric cases 1998-2011
- High risk features more common than in adults:
 - Mucinous/signet ring histology
 - High grade/poorly differentiated
 - Microsatellite instability
 - FAP: 10% vs 0.1% (SEER)
 - Stage III/IV: 62% vs 37% (NCD)
- Outcome
 - Inferior survival for children vs adults <50
 - Inferior outcome for rectal vs colon cancer
 - Inferior survival for higher grade/stage

Cancer 2010;116:758–65
J Pediatric Surg 51 (2016) 1061–1066
Pediatric Colorectal Cancer
Pediatric Colorectal Cancer

Cancer 2010;116:758–65
Pediatric Colorectal Cancer

• Unanswered questions:
 • Difference in mechanism of carcinogenesis?
 • Proportion with predisposing syndromes?
 • Undiscovered genetic risk factors?
 • Reasons for advanced grade/stage?
 • No screening
 • Delay in diagnosis
 • Differences in tumor biology
 • Optimal treatment approach?
Nasopharyngeal Carcinoma
Nasopharyngeal Carcinoma

• Annual incidence: 0.5-2 cases per 100,000 in US
 • Extremely rare <10 years
 • 0.8 cases per million ages 10-14 years
 • 1.3 cases per million ages 15-19 years
 • Peak incidence in 5th-6th decade
 • 2-3 times more common in males
• Geographical/ethnic variation
Nasopharyngeal Carcinoma

- Risk factors
 - EBV infection
 - Tobacco, alcohol
 - Salted fish

- Classification (WHO)
 - Type I: keratinizing
 - Type II: non-keratinizing
 - Type III: undifferentiated

- Biology:
- Treatment
 - Chemotherapy
 - Radiation
 - Little role for surgery

- Toxicity
 - Acute: mucositis, nausea/vomiting, renal
 - Late: hearing loss, xerostomia, second malignancy, renal, endocrine

Cancer Epidemiol Biomarkers Prev 2008;17(9):2356–65
Nasopharyngeal Carcinoma

- SEER registry data
 - 1998-2006
 - 6,129 cases
 - 129 children and adolescents (2%)
 - Median age 16 years (range 7-19)
 - Incidence:
 - Children: 0.5/million person-years
 - Adults: 8.4/million person-years

Nasopharyngeal Carcinoma

<table>
<thead>
<tr>
<th>Variable</th>
<th>Children/Adolescents</th>
<th>Adults</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>34 (26.4%)</td>
<td>1,543 (29.3%)</td>
<td>0.52</td>
</tr>
<tr>
<td>Male</td>
<td>95 (73.6%)</td>
<td>3,715 (70.7%)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native American</td>
<td>1 (0.8%)</td>
<td>101 (1.9%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Asian/Pacific</td>
<td>20 (15.5%)</td>
<td>2,271 (43.25%)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>45 (34.9%)</td>
<td>477 (9.1%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>63 (48.8%)</td>
<td>2,381 (45.3%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0 (0.0%)</td>
<td>28 (0.5%)</td>
<td></td>
</tr>
<tr>
<td>WHO Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>13 (10.1%)</td>
<td>2,280 (43.4%)</td>
<td><0.001</td>
</tr>
<tr>
<td>II</td>
<td>8 (6.25)</td>
<td>778 (14.8%)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>80 (62.0%)</td>
<td>1,150 (21.9%)</td>
<td></td>
</tr>
<tr>
<td>NOS</td>
<td>28 (21.7%)</td>
<td>1,050 (20.0%)</td>
<td></td>
</tr>
</tbody>
</table>

Pediatr Blood Cancer 2010; 55:279-284
Nasopharyngeal Carcinoma

- **Clinical features**
 - Advanced (stage III/IV) disease in:
 - 31/46% of children
 - 29/36% of adults
 - 62% WHO Type III histology

- **Prognosis**
 - 5/10-year NPC-specific survival:
 - 83/82% in children
 - 62/55% in adults

- **Second malignancies**
 - O/E ratio in children: 4.36
 - O/E ratio in adults: 1.41
Nasopharyngeal Carcinoma

- COG trial ARAR0331
 - Open 2006-2012
 - Cisplatin/5FU + XRT (60 Gy) with amifostine
 - 111 patients enrolled (slow accrual)
 - Median age 14 years (3-18)
 - 46.8% African American
 - Results (unpublished):
 - Excellent 5-year EFS/OS: 84.3/94.1%
 - Significant toxicity with cisplatin/XRT
 - Inferior outcome with cisplatin dose reduction
 - Radiation dose reduction to 60 Gy is feasible
 - Amifostine effect on reducing ototoxicity/xerostomia not yet reported
 - Future plans
 - EBV-specific cytotoxic T lymphocytes?
 - Beta interferon maintenance therapy?
 - Further radiation dose reduction?
Pleuropulmonary Blastoma
Pleuropulmonary Blastoma

- Rare aggressive malignancy of pleuropulmonary mesenchyme
- Epidemiology
 - Extremely rare:
 - 37 cases in SEER 18 from 2000-2011 (~15 cases/year in US)
 - 350 cases in IPPBR* from 1962-2012
 - Most common primary malignancy of lung in children
 - Peak age 1-4 years (median 38 months)
- Classification - reflects a spectrum of malignant evolution over time:
 - Type I: purely cystic with subtle malignant changes
 - Type Ir (regressed): purely cystic with no malignant components
 - Type II: mixed cystic and solid
 - Type III: purely solid malignant neoplasm

<table>
<thead>
<tr>
<th>Relative proportion</th>
<th>Type I</th>
<th>Type Ir</th>
<th>Type II</th>
<th>Type II/III + III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (months)</td>
<td>8</td>
<td>47</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>5 year overall survival</td>
<td>89%</td>
<td>100%</td>
<td>71%</td>
<td>53%</td>
</tr>
</tbody>
</table>

*International Pleuropulmonary Plastoma Registry, established 1998
Cancer 2015 January 15; 121(2): 276–285
Pleuropulmonary Blastoma

PPB Type
- I
- I Regressed

PPB overall survival by type
- Overall Survival
- Disease-Free Survival

PPB disease-free survival by type
- Overall Survival
- Disease-Free Survival

Cancer 2015 January 15; 121(2): 276–285
Pleuropulmonary Blastoma

- Genetics
 - Germline mutations in *DICER1* present in 66% of PPB cases
 - One third of cases have *PPB family tumor and dysplasia syndrome*
 - Increased risk in patients and relatives of:
 - Cystic nephroma (up to 10%) or Wilms tumor
 - Sex cord-stromal tumors
 - Multinodular goiters and thyroid cancer
 - Bilateral lung cysts and nodules
 - Low penetrance: not all families with *DICER1* mutations develop PPB
 - *DICER1* status does not correlate with tumor type or outcome

- Prognostic factors
 - Tumor Type
 - Metastases
 - Complete surgical resection
Pleuropulmonary Blastoma

- Clinical features
 - Respiratory distress/chest pain
 - Pneumothorax
 - Incidental pulmonary cysts
 - Multiple lesions in 50% (33% bilateral)
 - Metastases
 - To brain in 11% of type II, 54% of type III
 - Other sites: bone, liver, vascular invasion

- Treatment
 - Chemotherapy may reduce recurrence risk
 - Sarcoma regimens appear effective
 - IPPBR recommendations:
 - Surgery + VAC chemotherapy for Type I
 - Surgery + IVADo chemotherapy for Type II/III
 - Consider radiation for incomplete resection
 - Surveillance is important
Retinoblastoma
Retinoblastoma

- Incidence: 3.7 cases per million children <15 years
- 300 new cases/year in US
 - 3% of all pediatric cancers
 - 11% of cancers <1 year
- Age at presentation
 - 63% <2 years
 - 95% <5 years
- Laterality
 - <1 yr: 42% bilateral – 58% unilateral
 - >2 yr: 9% bilateral – 91% unilateral
- Prognosis
 - Highly curable: 97% survival
 - High incidence of late effects (87%):
 - Vision loss
 - Hearing loss
 - Second malignancy (leading cause of death)
Retinoblastoma

- Presentation: leukocoria or strabismus
- Genetics
 - 25-30% heritable
 - Germline mutation in \(RB1 \) tumor suppressor gene
 - Younger onset and bilateral disease
 - Risk for other cancers: osteosarcoma, pineoblastoma, soft tissue sarcomas, melanoma (especially following radiation)
 - 70-75% sporadic
 - Somatic mutations in \(RB1 \)
 - “Second hit” necessary to cause disease
- Treatment goals
 - Save life/cure disease
 - Preserve vision
 - Minimize late effects
Retinoblastoma

• Staging/Grouping
 • Stage: extent of disease in the body (intraocular/extraocular)
 • Group: extent of disease in the eye (predicts salvage)

• Multidisciplinary approach

• Treatment options
 • Enucleation
 • Systemic chemotherapy
 • Local chemotherapies
 • Arterial chemotherapy
 • Vitreal/subconjunctival chemotherapy
 • Other local therapies
 • Laser therapy
 • Cryotherapy
 • Radiation
Retinoblastoma: COG trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Title</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARET0231</td>
<td>A Single Arm Trial of Systemic and Subtenon Chemotherapy for Groups C and D Intraocular Retinoblastoma</td>
<td>Closed 2011</td>
<td>Terminated early for poor accrual: 22 patients</td>
</tr>
<tr>
<td>ARET0332*</td>
<td>A Study of Unilateral Retinoblastoma With and Without Histopathologic High-Risk Features and the Role of Adjuvant Chemotherapy</td>
<td>Completed 2010</td>
<td>Low recurrence risk after enucleation +/- chemo for patients +/- risk factors</td>
</tr>
<tr>
<td>ARET0331</td>
<td>Trial of Systemic Neoadjuvant Chemotherapy for Group B Intraocular Retinoblastoma</td>
<td>Closed 2009</td>
<td>Higher than expected local failure rate with 2-drug chemo</td>
</tr>
<tr>
<td>ARET0321**</td>
<td>A Trial of Intensive Multi-Modality Therapy for Extra-Ocular Retinoblastoma</td>
<td>Completed May 2017</td>
<td>Improved survival for all but those with CNS disease (trilateral)</td>
</tr>
<tr>
<td>ARET12P1</td>
<td>A Multi-Institutional Feasibility Study of Intra-Arterial Chemotherapy Given in the Ophthalmic Artery of Children with Retinoblastoma</td>
<td>Completed April 2017</td>
<td>Not feasible: will pursue systemic + intravitreal therapy next</td>
</tr>
</tbody>
</table>

*participating centers: US, India

**participating centers: Argentina, Australia, Brazil, Canada, Egypt, New Zealand, US
Thyroid Carcinoma
Thyroid Carcinoma

• Epidemiology
 • Incidence: 14.6 per 100,000 (all ages)
 • Children <20 years: 1.1 per 100,000
 • <15 years: 2 cases per million
 • 1.5% of all cancers
 • 15-19 years: 17.6 cases per million
 • 8% of all cancers
 • Incidence in children increasing 1% per year since 1973
 • Female-to-male ratio: 4.4:1

• Risk Factors
 • Radiation exposure
 • Cancer predisposition syndromes
 • MEN2A and MEN2B
 • Carney complex
 • DICER1 syndrome
Thyroid Carcinoma

- **Histology**
 - **Papillary (60-75%)**
 - Lymph node metastases common
 - Excellent prognosis
 - **Follicular (10-20%)**
 - Bone/lung metastases common
 - Excellent prognosis
 - **Medullary (5-10%)**
 - Most often familial (MEN2), younger age
 - Inferior prognosis
 - **Anaplastic (<1%)**
 - Extremely rare, aggressive
 - **Benign lesions**
 - Adenomas, goiters
 - 60-80% of thyroid nodules in children are benign (vs 95% in adults)
Thyroid Carcinoma

- Presenting Symptoms
 - Cervical adenopathy
 - Thyroid mass
 - Hyperthyroidism (rare)

- Metastases
 - More common in children than adults
 - Lymph nodes: 40-90% vs 20-50%
 - Lungs: 20-30% vs 2%
 - Most common in younger vs older children

- Outcome
 - Overall: all-stage 5-year survival 99.5% in children (98.2% in adults)
 - Advanced disease
 - 15-year DFS in children: 85-92% with metastases (98-99% for localized)
 - Only 50% survival at 15 years for children with medullary carcinoma
 - Risk factors: male sex, large/multifocal tumor, metastases
 - Similar prognosis +/- prior radiation therapy

15-year disease-specific survival by age (SEER 2007-2012)
Thyroid Carcinoma

Legend (Stage at Diagnosis)
- All Stages
- Localized
- Regional
- Distant

Legend (Age)
- All Ages
- Ages < 20

SEER thyroid cancer stage 2005-2014
5 year SEER relative survival 2007-2013
Thyroid Carcinoma

• Treatment
 • Differentiated (papillary/follicular) carcinoma
 • Surgery: thyroidectomy and lymph node dissection
 • Radioactive iodine (\(^{131}\)I): for residual/metastatic disease
 • Medullary carcinoma
 • Surgery: prophylactic thyroidectomy for MEN2
 • Chemotherapy (tyrosine kinase inhibitors):
 • Cabozantinib, vandetanib approved in adults with recurrent/refractory disease
 • Response rate 44% in small pediatric trial of vandetanib

• Toxicity
 • Hypothyroidism: lifelong thyroxine replacement
 • Surgical complications: recurrent laryngeal nerve damage
 • Radiotherapy:
 • Short-term: transient bone marrow suppression, pain, nausea/vomiting
 • Long-term: infertility, leukemia, pulmonary fibrosis, salivary gland dysfunction
RARE CHILDHOOD CANCERS

CANCERS ONLY IN CHILDREN
- Melanotic neuroectodermal tumors of infancy
- Malignant rhabdoid tumors
- Pancreatoblastoma

TYPICALLY ONLY IN ADULTS
- Pancreatic cancer

HEAD AND NECK CANCERS IN CHILDREN are rare, like atypical teratoid and ganglioglioma.

DIGESTIVE CANCER
RARELY, cancers that are typical for only adults are found in children.

ADRENAL CANCER

A 2009 study found that the least common cancers in children where thyroid carcinomas and mucoepidermoid carcinoma.

Fortunately, there are treatments available for these types of cancers.
Conclusions

• All childhood cancer is rare
• Rare tumors are not all that rare
• Children are not little adults
• Infrequent childhood cancers are important
• Defining rare childhood cancer is challenging
• Studying rare childhood cancers is more challenging
• More research is needed to improve understanding and outcomes
• The children are worth it